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LETTER TO THE EDITOR 

On the reduction and some new exact solutions of the 
non-linear Dirac and Dirac-Klein-Gordon equations 

W I Fushchich and R Z Zhdanov 
Institute of Mathematics, Kiev, USSR 

Received 21 October 1987 

Abstract. New ansatze for spinor fields are suggested. Using these, we construct multi- 
parameter families of exact solutions of the non-linear many-dimensional Dirac and 
Dirac-Klein-Gordon equations, some solutions including arbitrary functions. 

In this letter we have constructed new families of exact solutions of the following 
equations: 

( Y p P W - ~ ( & w ) I C , ( x ) = 0  p=O,1 ,2 ,3  (1) 

where y, are (4 x 4)-Dirac matrices, 4 = +(x) is a four-component spinor, U = u(x) is 
a complex scalar function, po=ia/ax,, pa = -ia/ax,, a = 1,3; A, K ,  h i ,  pt and K~ are 
constants. Hereafter we use the summation convention. 

Solutions obtained by us differ from those already known in the literature [l-81. 
These solutions can be useful in the relativistic quantum field theory. 

To construct exact solutions of equation (1) we use the following ansatze: 

- 

4(x )  = [igl(w)+ Y‘&Aw)-(if,(w)+ Y4h(w))Y,Ppwlx 
(3) 

Y4 = YOYl Y2Y3 

$(x)=[Gi(wI,  w2)+i(ypaF’+ ~,d+)G2(w19 ~ 2 )  
(4) 

+i(ypbfi)Fl(w,,  w2)+(y,aF+ Y,dp)(Y”b”)F2(wl, w2)Ix 

p , p ’ ” w + A ( w ) = O  ( p , w ) ( p F ’ w ) + B ( w )  = o  ( 5 )  

where w = w(x) are scalar functions satisfying conditions of the form 

where f;, gi, F,, G,, A and B are arbitrary differentiable functions, w I  = a,xW + d,x*’, 
w2 = b j ”  and ,y is an arbitrary constant spinor. Hereafter a,, b,, c, and d, are arbitrary 
real parameters satisfying the following conditions: 

-a,a” = b,b* = c,cW = dpdp = -1 

a,bp = a,cp = a,d@ = b,cw = b,dF = c,d* = 0. 
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Substitution of ansatze (3) and (4) into the initial equation (1) leads to the following 
systems of differential equations for unknown functions f ; ,  g,, F,, G,: 

Bfl +MI = X[g: - g:+ B(f, -f:)l"gl 

8, = -X[d - g22+ Nf: --f:)I"fl 
gz=X[g:-g:+B(f:-f:)I"f' (6) 

Bf2+Af2= -i[g:-g:+ B(f:-f:)l"g2 = A(jx)"  

f; = df;/dw 8, = dg,/dw i = l , 2  
- 

F:, = -I[( GI)' - ( F1)']"G2 

Gk,+ Ft,= -X[(GL)2-(F1)2]"G2- G i , +  FL, =X[(G')'-(F')']"F'. 

Gk2 = -I[( GI)'- (F')']"F' 
( 7 )  

Not going into details of the integration of systems ( 5 )  and (6) we shall write down 
exact solutions of the non-linear Dirac equation (1) obtained through the substitution 
of expressions forf;, g, into ansatz (3) 

(i) K < a  
+(XI = w- ' /~"{+(I  - 4 ~ ) ' / ~ ( - i ~ , +  y 4 ~ 2 ) + ( C 1  -iy4C2) 

x [(rb)(by)+(rc)(cy)+(rd)(dy)lw-')X (8) 

w = [(by)'+(cy)2+(dy)2]1/2 C, = constant 

and the condition holds 

*( 1 -4K)'l2 -2Ki[4K( c: - c:)]" = 0 

( i i )  K > :  

+(XI = w - 1 / 2 K { ~ ( 4 ~  - 1)'/2(-iCl+ y 4 ~ z ) + ( ~ 1 - i y 4 ~ 2 )  

x [(ra)(ay)-(yb)(by)-(yc)(cy)lw-')X 

w = [( ay), - ( by)' - C, = constant 

( 9 )  
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where F is an arbitrary differentiable function; 

and the condition holds 
( m  + 116 -i(c:- c:)’” =o. 

ay  = a,y, ya = y , d  YY = Y,Y@ = o ,  1 , 2 , 3  

In the formulae (8)-( 13)  the following notations were used: 

(14) 
Y ,  = x, + 0, 6, = constant 1 = A ( ~ X ) ~ .  

If g 2 = f 2  = 0, w = x,x@ then ( 3 )  coincides with the ansatz suggested by Heisenberg 
in [ 13. That is why exact solutions of the equation ( 1 )  obtained with the help of the 
Heisenberg ansatz in [2-41 belong to classes (10) and ( 1 3 ) .  

It was Gursey who showed that under k = f equation ( 1 )  is conformally invariant 
[ 9 ] .  This makes it possible to construct new families of exact solutions using the 
solution generation technique (see [ 6 ] ) .  As is shown in [ 6 ]  the formula of generating 
solutions by final transformations of the four-parameter special conformal group has 
the form 

= a - 2 ( x ) [ l  - - ( Y X ) ( Y C Y ) I $ I ( X ’ )  

x ;  = ( x ,  - cw,xx)u-’(x) 

a ( x ) =  1 -2CYx+(CYa)(xx) CY, = constant p = 0,3. 
( 1 5 )  

Using ( 9 ) - ( 1 3 )  under k = f  as $ , ( x )  one can obtain multi-parameter families of 
solutions of the non-linear Dirac equation (1) which are invariant under the conformal 
group C( 1,3) .  

System ( 7 )  proved to be an integrable one. Substituting its general solution into 
the ansatz (4 )  we obtain a multi-parameter family of exact solutions of the equation 
( 1 )  depending on four arbitrary functions 

+ ( x ) = {  d1 c o s h ( ~ b x ) + d 2 s i n h ( ~ b x ) + i ( y a + y d ) [ ( b x / 2 ~ ) ~  
x ( d2 cosh( dbx)  + 4 ,  sinh( dbx)  + d3 cosh( dbx)  + 4, sinh( dbx) ) ]  

+ i( yb)(  4 sinh( dbx)  + d2 cosh( dbx) )  + ( ya + yd yb 1 

cosh( dbx)  + d3 sinh( dbx)  + d4 cosh( d b x ) ] } ~  
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where 

ya = y , d  yb = y,bp bx = b,x@ 

+(U) = -A(XX)“[(~I(~))’-(~,(~))~I“ 41 9 . . . 9 44 
are arbitrary differentiable functions of w = a,x, + d,xp. 

tensor 
We note that it is not difficult to construct an explicit form of the energy-momentum 

T,”=fi(cLY,S”-cL~Y,9)+g,~ 

corresponding to obtained solutions. For the solutions (8) - (  10) one has 

TFY - 6 , ~  =constant. (17)  - ( I C  -t 1 I /  K 
w++m 

If O <  K < a  (for ( 8 ) )  or K > ;  (for (10)) then Tpy has a non-integrable singularity 
in the point x, = -e,, in other points of the Minkowsky space R (  1 , 3 )  expression (17 )  
being integrable. In the case K > f  (for (9)) T,,, has a singularity on the cone 

ay = *[ ( by)2 + ( C ~ ) ~ ] I ”  

while at other points it is integrable. 
Ansatze ( 3 ) ,  ( 4 )  proved to be very useful while constructing solutions of the system 

( 2 ) .  We shall write down some of the families of exact solutions obtained, omitting 
intermediate calculations. 

( i )  K~ > I ,  K ?  > 

+(x) = W - 1 / * K 2  { (4K2-1)1/2(-iC,+Y4C2)+(CI -iy4c2) 

x [ ( Ya ( a y )  - ( Yb 1 (by) - ( YC) ( cy  1 I., - lLY 
( 1 8 )  

u ( x )  = E w - ” “ ~  C, = constant 

w = [ ( ~ y ) * - ( b y ) ~ - ( ~ y ) ~ ] ” ~  
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where 8, C, and E are constants satisfying conditions 

O2(m2-  1) = [ p , / ~ 1 2 / ( m - ' )  + p*(Xx) ' / " (  c: - c:)'/"]' 
e ( m +  I )  = [ A " E I ~ / ' " - " + A ~ ( ~ ~ ) ' ~ " ( C : -  c:)""]. 

In (18), (19) we have used notations of (14). 
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