On the reduction and some new exact solutions of the nonlinear Dirac and Dirac-Klein-Gordon equations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1988 J. Phys. A: Math. Gen. 21 L5
(http://iopscience.iop.org/0305-4470/21/1/002)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 15:24

Please note that terms and conditions apply.

LETTER TO THE EDITOR

On the reduction and some new exact solutions of the non-linear Dirac and Dirac-Klein-Gordon equations

W I Fushchich and R Z Zhdanov
Institute of Mathematics, Kiev, USSR

Received 21 October 1987

Abstract

New ansätze for spinor fields are suggested. Using these, we construct multiparameter families of exact solutions of the non-linear many-dimensional Dirac and Dirac-Klein-Gordon equations, some solutions including arbitrary functions.

In this letter we have constructed new families of exact solutions of the following equations:

$$
\begin{align*}
& \left(\gamma_{\mu} p^{\mu}-\lambda(\bar{\psi} \psi)^{\kappa}\right) \psi(x)=0 \quad \mu=0,1,2,3 \tag{1}\\
& {\left[\gamma_{\mu} p^{\mu}-\left(\lambda_{1}|u|^{\kappa_{1}}+\lambda_{2}(\bar{\psi} \psi)^{\kappa_{2}}\right)\right] \psi(x)=0} \\
& {\left[p_{\mu} p^{\mu}=\left(\mu_{1}|u|^{\kappa_{1}}+\mu_{2}(\bar{\psi} \psi)^{\kappa_{2}}\right)^{2}\right] u(x)=0} \tag{2}
\end{align*}
$$

where γ_{μ} are (4×4)-Dirac matrices, $\psi=\psi(x)$ is a four-component spinor, $u=u(x)$ is a complex scalar function, $p_{0}=\mathrm{i} \partial / \partial x_{0}, p_{a}=-\mathrm{i} \partial / \partial x_{a}, a=\overline{1,3} ; \lambda, \kappa, \lambda_{i}, \mu_{i}$ and κ_{i} are constants. Hereafter we use the summation convention.

Solutions obtained by us differ from those already known in the literature [1-8]. These solutions can be useful in the relativistic quantum field theory.

To construct exact solutions of equation (1) we use the following ansätze:

$$
\begin{gather*}
\psi(x)=\left[\mathrm{i} g_{1}(\omega)+\gamma_{4} g_{2}(\omega)-\left(\mathrm{i} f_{1}(\omega)+\gamma_{4} f_{2}(\omega)\right) \gamma_{\mu} p^{\mu} \omega\right] \chi \tag{3}\\
\gamma_{4}=\gamma_{0} \gamma_{1} \gamma_{2} \gamma_{3} \\
\psi(x)=\left[G_{1}\left(\omega_{1}, \omega_{2}\right)+\mathrm{i}\left(\gamma_{\mu} a^{\mu}+\gamma_{\mu} d^{\mu}\right) G_{2}\left(\omega_{1}, \omega_{2}\right)\right. \tag{4}\\
\left.+\mathrm{i}\left(\gamma_{\mu} b^{\mu}\right) F_{1}\left(\omega_{1}, \omega_{2}\right)+\left(\gamma_{\mu} a^{\mu}+\gamma_{\mu} d^{\mu}\right)\left(\gamma_{\nu} b^{\nu}\right) F_{2}\left(\omega_{1}, \omega_{2}\right)\right] \chi
\end{gather*}
$$

where $\omega=\omega(x)$ are scalar functions satisfying conditions of the form

$$
\begin{equation*}
p_{\mu} p^{\mu} \omega+A(\omega)=0 \quad\left(p_{\mu} \omega\right)\left(p^{\mu} \omega\right)+B(\omega)=0 \tag{5}
\end{equation*}
$$

where $f_{i}, g_{i}, F_{i}, G_{i}, A$ and B are arbitrary differentiable functions, $\omega_{1}=a_{\mu} x^{\mu}+d_{\mu} x^{\mu}$, $\omega_{2}=b_{\nu} x^{\nu}$ and χ is an arbitrary constant spinor. Hereafter $a_{\mu}, b_{\mu}, c_{\mu}$ and d_{μ} are arbitrary real parameters satisfying the following conditions:

$$
\begin{aligned}
& -a_{\mu} a^{\mu}=b_{\mu} b^{\mu}=c_{\mu} c^{\mu}=d_{\mu} d^{\mu}=-1 \\
& a_{\mu} b^{\mu}=a_{\mu} c^{\mu}=a_{\mu} d^{\mu}=b_{\mu} c^{\mu}=b_{\mu} d^{\mu}=c_{\mu} d^{\mu}=0
\end{aligned}
$$

Substitution of ansätze (3) and (4) into the initial equation (1) leads to the following systems of differential equations for unknown functions $f_{i}, g_{i}, F_{i}, G_{i}$:

$$
\begin{gather*}
B \dot{f}_{1}+A f_{1}=\tilde{\lambda}\left[g_{1}^{2}-g_{2}^{2}+B\left(f_{1}-f_{2}^{2}\right)\right]^{\kappa} g_{1} \\
\dot{g}_{1}=-\tilde{\lambda}\left[g_{1}^{2}-g_{2}^{2}+B\left(f_{1}^{2}-f_{2}^{2}\right)\right]^{\kappa} f_{1} \\
\dot{g}_{2}=\tilde{\lambda}\left[g_{1}^{2}-g_{2}^{2}+B\left(f_{1}^{2}-f_{2}^{2}\right)\right]^{\kappa} f_{2} \tag{6}\\
B \dot{f}_{2}+A f_{2}=-\tilde{\lambda}\left[g_{1}^{2}-g_{2}^{2}+B\left(f_{1}^{2}-f_{2}^{2}\right)\right]^{\kappa} g_{2} \quad \tilde{\lambda}=\lambda(\bar{\chi} \chi)^{\kappa} \\
\dot{f}_{i}=\mathrm{d} f_{i} / \mathrm{d} \omega \quad \dot{g}_{i}=\mathrm{d} g_{i} / \mathrm{d} \omega \quad i=\overline{1,2} \\
F_{\omega_{2}}^{\prime}=-\tilde{\lambda}\left[\left(G^{1}\right)^{2}-\left(F^{1}\right)^{2}\right]^{\kappa} G^{2} \quad G_{\omega_{2}}^{1}=-\tilde{\lambda}\left[\left(G^{1}\right)^{2}-\left(F^{1}\right)^{2}\right]^{\kappa} F^{1} \\
G_{\omega_{1}}^{1}+F_{\omega_{2}}^{2}=-\tilde{\lambda}\left[\left(G^{1}\right)^{2}-\left(F^{1}\right)^{2}\right]^{\kappa} G^{2}-G_{\omega_{2}}^{2}+F_{\omega_{1}}^{1}=\tilde{\lambda}\left[\left(G^{1}\right)^{2}-\left(F^{1}\right)^{2}\right]^{\kappa} F^{2} . \tag{7}
\end{gather*}
$$

Not going into details of the integration of systems (5) and (6) we shall write down exact solutions of the non-linear Dirac equation (1) obtained through the substitution of expressions for f_{i}, g_{i} into ansatz (3)
(i) $\kappa<\frac{1}{4}$

$$
\begin{align*}
& \psi(x)=\omega^{-1 / 2 \kappa}\left\{干(1-4 \kappa)^{1 / 2}\left(-\mathrm{i} C_{1}+\gamma_{4} C_{2}\right)+\left(C_{1}-\mathrm{i} \gamma_{4} C_{2}\right)\right. \\
&\left.\times[(\gamma b)(b y)+(\gamma c)(c y)+(\gamma d)(d y)] \omega^{-1}\right\} \chi \tag{8}\\
& \omega=\left[(b y)^{2}+(c y)^{2}+(d y)^{2}\right]^{1 / 2} \quad C_{j}=\mathrm{constant}
\end{align*}
$$

and the condition holds

$$
\pm(1-4 \kappa)^{1 / 2}-2 \kappa \tilde{\lambda}\left[4 \kappa\left(C_{1}^{2}-C_{2}^{2}\right)\right]^{\kappa}=0
$$

(ii) $\kappa>\frac{1}{4}$

$$
\begin{align*}
\psi(x)=\omega^{-1 / 2 \kappa} & \left\{\mp(4 \kappa-1)^{1 / 2}\left(-\mathrm{i} C_{1}+\gamma_{4} C_{2}\right)+\left(C_{1}-\mathrm{i} \gamma_{4} C_{2}\right)\right. \\
& \left.\times[(\gamma a)(a y)-(\gamma b)(b y)-(\gamma c)(c y)] \omega^{-1}\right\} \chi \tag{9}\\
& \omega=\left[(a y)^{2}-(b y)^{2}-(c y)^{2}\right]^{1 / 2} \quad C_{j}=\mathrm{constant}
\end{align*}
$$

and the condition holds

$$
\pm(4 \kappa-1)^{1 / 2}-2 \kappa \tilde{\lambda}\left[4 \kappa\left(C_{1}^{2}-C_{2}^{2}\right)\right]^{\kappa}=0
$$

(iii) $\kappa>\frac{1}{6}$

$$
\begin{align*}
\psi(x)=\omega^{-1 / 2 \kappa}[& \mp(6 \kappa-1)^{1 / 2}\left(-\mathrm{i} C_{1}+\gamma_{4} C_{2}\right)+\left(C_{1}-\mathrm{i} \gamma_{4} C_{2}\right) \\
& \left.\times(\gamma y) \omega^{-1}\right] \chi \quad \omega(y y)^{1 / 2} \quad C_{j}=\mathrm{constant} \tag{10}
\end{align*}
$$

and the condition holds

$$
\pm(6 \kappa-1)^{1 / 2}-2 \kappa \tilde{\lambda}\left[6 \kappa\left(C_{1}^{2}-C_{2}^{2}\right)\right]^{\kappa}=0
$$

(iv) $\kappa \in \mathbb{R}^{1}$
$\psi(x)=\left\{\mathrm{i} g_{1}(\omega)+\gamma_{4} g_{2}(\omega)+\left(f_{1}(\omega)-\mathrm{i} \gamma_{4} f_{2}(\omega)\right)[\gamma b+(\gamma a+\gamma d) \dot{F}(a y+d y)]\right\} \chi$
$f_{1}=C_{1} \cosh \left[\tilde{\lambda}\left(C_{3}^{2}-C_{1}^{2}\right)^{\kappa} \omega+C_{2}\right] \quad f_{2}=C_{3} \cosh \left[\tilde{\lambda}\left(C_{3}^{2}-C_{1}^{2}\right)^{\kappa} \omega+C_{4}\right]$
$g_{1}=C_{1} \sinh \left[\tilde{\lambda}\left(C_{3}^{2}-C_{1}^{2}\right)^{\kappa} \omega+C_{2}\right] \quad g_{2}=C_{3} \sinh \left[\tilde{\lambda}\left(C_{3}^{2}-C_{1}^{2}\right)^{\kappa} \omega+C_{4}\right]$
$\omega=b y+F(a y+d y) \quad C_{j}=$ constant
where F is an arbitrary differentiable function;

$$
\begin{array}{ll}
\psi(x)=\left[\mathrm{i} g_{1}(\omega)+\gamma_{4} g_{2}(\omega)+\left(f_{1}(\omega)-\mathrm{i} \gamma_{4} f_{2}(\omega)\right)(\gamma a)\right] \chi \\
f_{1}=C_{1} \sin \left[\tilde{\lambda}\left(C_{1}^{2}-C_{3}^{2}\right)^{\kappa} \omega+C_{2}\right] & f_{2}=C_{3} \cos \left[\tilde{\lambda}\left(C_{1}^{2}-C_{3}^{2}\right)^{\kappa} \omega+C_{4}\right] \\
g_{1}=C_{1} \cos \left[\tilde{\lambda}\left(C_{1}^{2}-C_{3}^{2}\right)^{\kappa} \omega+C_{2}\right] & g_{2}=C_{3} \sin \left[\tilde{\lambda}\left(C_{1}^{2}-C_{3}^{2}\right)^{\kappa} \omega+C_{4}\right] \tag{12}\\
C_{j}=\text { constant } \quad \omega=a y &
\end{array}
$$

(v) $\kappa=1 / m \quad m=2,3$
$\psi(x)=\left(1+\theta^{2} \omega^{2}\right)^{-(m+1) / 2}\left[\mathrm{i} C_{1}+\gamma_{4} C_{2}-\theta\left(C_{1}+\mathrm{i} \gamma_{4} C_{2}\right)\right]$ $\times \begin{cases}{[(\gamma a)(a y)-(\gamma b)(b y)-(y c)(c y)]} & m=2 \\ \gamma y & m=3\end{cases}$
$\omega= \begin{cases}{\left[(a y)^{2}-(b y)^{2}-(c y)^{2}\right]^{1 / 2}} & m=2 \\ (y y)^{1 / 2} & m=3\end{cases}$
and the condition holds

$$
(m+1) \theta-\tilde{\lambda}\left(C_{1}^{2}-C_{2}^{2}\right)^{1 / m}=0
$$

In the formulae (8)-(13) the following notations were used:

$$
\begin{array}{lcc}
a y \equiv a_{\mu} y^{\mu} & \gamma a \equiv \gamma_{\mu} a^{\mu} & \gamma y \equiv \gamma_{\mu} y^{\mu}
\end{array} \quad \mu=0,1,2,3
$$

If $g_{2} \equiv f_{2} \equiv 0, \omega=x_{\mu} x^{\mu}$ then (3) coincides with the ansatz suggested by Heisenberg in [1]. That is why exact solutions of the equation (1) obtained with the help of the Heisenberg ansatz in [2-4] belong to classes (10) and (13).

It was Gürsey who showed that under $k=\frac{1}{3}$ equation (1) is conformally invariant [9]. This makes it possible to construct new families of exact solutions using the solution generation technique (see [6]). As is shown in [6] the formula of generating solutions by final transformations of the four-parameter special conformal group has the form

$$
\begin{align*}
& \psi_{2}(x)=\sigma^{-2}(x)[1-(\gamma x)(\gamma \alpha)] \psi_{1}\left(x^{\prime}\right) \\
& x_{\mu}^{\prime}=\left(x_{\mu}-\alpha_{\mu} x x\right) \sigma^{-1}(x) \tag{15}\\
& \sigma(x)=1-2 \alpha x+(\alpha \alpha)(x x) \quad \alpha_{\mu}=\text { constant } \quad \mu=\overline{0,3} .
\end{align*}
$$

Using (9)-(13) under $k=\frac{1}{3}$ as $\psi_{1}(x)$ one can obtain multi-parameter families of solutions of the non-linear Dirac equation (1) which are invariant under the conformal group $\mathrm{C}(1,3)$.

System (7) proved to be an integrable one. Substituting its general solution into the ansatz (4) we obtain a multi-parameter family of exact solutions of the equation (1) depending on four arbitrary functions

$$
\begin{align*}
& \psi(x)=\left\{\phi_{1} \cosh (\phi b x)+\phi_{2} \sinh (\phi b x)+\mathrm{i}(\gamma a+\gamma d)[(b x / 2 \phi) \dot{\phi}\right. \\
&\left.\times\left(\phi_{2} \cosh (\phi b x)+\phi_{1} \sinh (\phi b x)+\phi_{3} \cosh (\phi b x)+\phi_{4} \sinh (\phi b x)\right)\right] \\
&+\mathrm{i}(\gamma b)\left(\phi \sinh (\phi b x)+\phi_{2} \cosh (\phi b x)\right)+(\gamma a+\gamma d)(\gamma b) \tag{16}\\
& \times {\left[\left(\frac{\phi_{2} \dot{\phi}}{\phi^{2}}-\frac{\phi_{1}}{\phi}-\frac{\phi_{2} \dot{\phi}}{2 \phi} b x\right) \sinh (\phi b x)+\left(\frac{\phi_{1} \dot{\phi}}{2 \phi^{2}}-\frac{\phi_{2}}{\phi}\right.\right.} \\
&\left.\left.\left.-\frac{\phi_{1} \phi}{2 \phi} b x\right) \cosh (\phi b x)+\phi_{3} \sinh (\phi b x)+\phi_{4} \cosh (\phi b x)\right]\right\} x
\end{align*}
$$

$\dot{\phi}=\frac{\mathrm{d} \phi}{\mathrm{d} \omega} \quad \dot{\phi}_{i}=\frac{\mathrm{d} \phi_{i}}{\mathrm{~d} \omega} \quad i=\overline{1,2}$
where

$$
\begin{array}{lll}
\gamma a \equiv \gamma_{\mu} a^{\mu} & \gamma b \equiv \gamma_{\mu} b^{\mu} & b x \equiv b_{\mu} x^{\mu} \\
\phi(\omega)=-\lambda(\bar{\chi} \chi)^{\kappa}\left[\left(\phi_{1}(\omega)\right)^{2}-\left(\phi_{3}(\omega)\right)^{2}\right]^{\kappa} & \phi_{1}, \ldots, \phi_{4}
\end{array}
$$

are arbitrary differentiable functions of $\omega=a_{\mu} x^{\mu}+d_{\mu} x^{\mu}$.
We note that it is not difficult to construct an explicit form of the energy-momentum tensor

$$
\begin{aligned}
& T_{\mu \nu}=\frac{1}{2} \mathrm{i}\left(\bar{\psi} \gamma_{\mu} \psi_{\nu}-\bar{\psi}_{\nu} \gamma_{\mu} \psi\right)+g_{\mu \nu} \mathscr{L} \\
& \mathscr{L}=\frac{1}{2} \mathrm{i}\left(\bar{\psi} \gamma_{\mu} \psi_{\mu}-\bar{\psi}_{\mu} \gamma_{\mu} \psi\right)-\frac{\lambda}{k+1}(\bar{\psi} \psi)^{k+1}
\end{aligned}
$$

corresponding to obtained solutions. For the solutions (8)-(10) one has

$$
\begin{equation*}
T_{\mu \nu} \stackrel{\omega \rightarrow+\infty}{\sim} \theta_{\mu \nu} \omega^{-(\kappa+1) / \kappa} \quad \theta_{\mu \nu}=\text { constant } . \tag{17}
\end{equation*}
$$

If $0<\kappa<\frac{1}{4}$ (for (8)) or $\kappa>\frac{1}{6}$ (for (10)) then $T_{\mu \nu}$ has a non-integrable singularity in the point $x_{\mu}=-\theta_{\mu}$, in other points of the Minkowsky space $R(1,3)$ expression (17) being integrable. In the case $\kappa>\frac{1}{4}$ (for (9)) $T_{\mu \nu}$ has a singularity on the cone

$$
a y= \pm\left[(b y)^{2}+(c y)^{2}\right]^{1 / 2}
$$

while at other points it is integrable.
Ansätze (3), (4) proved to be very useful while constructing solutions of the system (2). We shall write down some of the families of exact solutions obtained, omitting intermediate calculations.
(i) $\kappa_{1}>1, \kappa_{2}>\frac{1}{4}$

$$
\begin{align*}
& \begin{array}{l}
\psi(x)=\omega^{-1 / 2 \kappa_{2}}\left\{\mp\left(4 \kappa_{2}-1\right)^{1 / 2}\left(-\mathrm{i} C_{1}+\gamma_{4} C_{2}\right)+\left(C_{1}-\mathrm{i} \gamma_{4} C_{2}\right)\right. \\
\times\left[(\gamma a(a y)-(\gamma b)(b y)-(\gamma c)(c y)] \omega^{-1}\right\} \chi \\
u(x)=E \omega^{-1 / \kappa_{1}} \quad C_{i}=\mathrm{constant} \\
\omega=\left[(a y)^{2}-(b y)^{2}-(c y)^{2}\right]^{1 / 2}
\end{array}
\end{align*}
$$

and the following conditions hold:

$$
\begin{aligned}
\left(1-\kappa_{1}\right) \kappa_{1}^{-2}+ & \left\{\mu_{1}|E|^{\kappa_{1}}+\mu_{2}(\bar{\chi} \chi)^{\kappa_{2}}\left[\left(C_{1}^{2}-C_{2}^{2}\right) 4 \kappa_{2}\right]^{\kappa_{2}}\right\}^{2}=0 \\
& \pm\left(4 \kappa_{2}-1\right)^{1 / 2}-2 \kappa_{2}\left\{\lambda_{1}|E|^{\kappa_{1}}+\lambda_{2}(\bar{\chi} \chi)^{\kappa_{2}}\left[4 \kappa_{2}\left(C_{1}^{2}-C_{2}^{2}\right)\right]^{\kappa_{2}}\right\}=0 .
\end{aligned}
$$

(ii) $\kappa_{1}=2 /(m-1) \quad \kappa_{2}=1 / m \quad m=2,3$
$\psi(x)=\left(1+\theta^{2} \omega^{2}\right)^{-(m+1) / 2} \chi\left[\mathrm{i} C_{1}+\gamma_{4} C_{2}-\theta\left(C_{1}+\mathrm{i} \gamma_{4} C_{2}\right)\right]$

$$
\times \begin{cases}(\gamma a)(a y)-(\gamma b)(b y)-(\gamma c)(c y) & m=2 \tag{19}\\ \gamma y & m=3\end{cases}
$$

$u(x)=E\left(1+\theta^{2} \omega^{2}\right)^{(1-m) / 2}$
$\omega= \begin{cases}{\left[(a y)^{2}-(b y)^{2}-(c y)^{2}\right]^{1 / 2}} & m=2 \\ (y y)^{1 / 2} & m=3\end{cases}$
where θ, C_{i} and E are constants satisfying conditions

$$
\begin{aligned}
& \theta^{2}\left(m^{2}-1\right)=\left[\mu_{1}|E|^{2 /(m-1)}+\mu_{2}(\bar{\chi} \chi)^{1 / m}\left(C_{1}^{2}-C_{2}^{2}\right)^{1 / m}\right]^{2} \\
& \theta(m+1)=\left[\lambda_{1}|E|^{2 /(m-1)}+\lambda_{2}(\bar{\chi} \chi)^{1 / m}\left(C_{1}^{2}-C_{2}^{2}\right)^{1 / m}\right] .
\end{aligned}
$$

In (18), (19) we have used notations of (14).

References

[1] Heisenberg W 1954 Z. Naturf. a 9292
[2] Kortel F 1956 Nuovo Cimento 4210
[3] Akdeniz K G and Smailagic A 1979 Nuovo Cimento A 51345
[4] Merwe P T 1981 Phys. Lett. 106B 485
[5] Kurdgelaidze D F 1959 Zh. Eksp. Teor. Fiz. 36842
[6] Fushchich W I and Shtelen W M 1983 J. Phys. A: Math. Gen. 16271
[7] Fushchich W I and Zhdanov R Z 1985 Group Theoretical Studies of the Mathematical Physics Problems (Kiev: Math. Inst.) p 20
[8] Fushchich W I and Zhdanov R Z 1987 J. Phys. A: Math. Gen. 204173
[9] Gürsey F 1956 Nuovo Cimento 3988

